C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n x\u00e1c t\u1eeb xa x\u01b0a v\u1eabn c\u00f2n hi\u1ec7u qu\u1ea3<\/h1>\n<\/div>\n\n\n\n\n\n\n\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n<\/div>\n\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\nC\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n<\/strong><\/span> x\u00e1c t\u1eeb xa x\u01b0a v\u1eabn c\u00f2n hi\u1ec7u qu\u1ea3 \u0111\u1ebfn nay m\u00e0 h\u00f4m nay ch\u00fang t\u00f4i s\u1ebd \u0111\u1ec1 c\u1eadp \u0111\u1ebfn g\u1ed3m 3 ph\u01b0\u01a1ng ph\u00e1p sau : soi theo l\u00f4 v\u1ec1 2,3 nh\u00e1y, d\u1ef1a v\u00e0o gi\u1ea3i \u0111\u1eb7c bi\u1ec7t, gi\u1ea3i 4 v\u00e0 5 v\u00e0 ph\u01b0\u01a1ng ph\u00e1p t\u00ednh theo ng\u00e0y \u00e2m.<\/p>\n\nM\u1ee5c L\u1ee5c<\/p>\n
\n- I. C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n d\u1ef1a v\u00e0o t\u00ednh theo ng\u00e0y \u00e2m\n
\n- 1.Xem theo 12 con gi\u00e1p<\/li>\n
- 2. Xem theo can chi v\u1edbi c\u00e1c th\u1ee9 t\u1ef1 sau :<\/li>\n<\/ul>\n<\/li>\n
- II. C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n b\u1eb1ng c\u00e1ch k\u1ebft h\u1ee3p gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u1edbi gi\u1ea3i 4 v\u00e0 gi\u1ea3i 5<\/li>\n
- III. C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n b\u1eb1ng c\u00e1ch soi l\u00f4 v\u1ec1 2 nh\u00e1y v\u00e0 3 nh\u00e1y<\/li>\n<\/ul>\n<\/div>\n
I. C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n d\u1ef1a v\u00e0o t\u00ednh theo ng\u00e0y \u00e2m<\/span><\/span><\/h2>\n1.Xem theo 12 con gi\u00e1p<\/span><\/span><\/h3>\nT\u00fd : 1<\/p>\n
S\u1eedu : 2<\/p>\n
D\u1ea7n : 3<\/p>\n
M\u00e3o : 4<\/p>\n
Th\u00ecn : 5<\/p>\n
T\u1ef5 : 6<\/p>\n
Ng\u1ecd : 7<\/p>\n
M\u00f9i : 8<\/p>\n
Th\u00e2n : 9<\/p>\n
D\u1eadu : 10<\/p>\n
Tu\u1ea5t : 11<\/p>\n
H\u1ee3i : 12<\/p>\n
<\/p>\n
C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n<\/strong><\/span> x\u00e1c t\u1eeb xa x\u01b0a v\u1eabn c\u00f2n hi\u1ec7u qu\u1ea3 \u0111\u1ebfn nay m\u00e0 h\u00f4m nay ch\u00fang t\u00f4i s\u1ebd \u0111\u1ec1 c\u1eadp \u0111\u1ebfn g\u1ed3m 3 ph\u01b0\u01a1ng ph\u00e1p sau : soi theo l\u00f4 v\u1ec1 2,3 nh\u00e1y, d\u1ef1a v\u00e0o gi\u1ea3i \u0111\u1eb7c bi\u1ec7t, gi\u1ea3i 4 v\u00e0 5 v\u00e0 ph\u01b0\u01a1ng ph\u00e1p t\u00ednh theo ng\u00e0y \u00e2m.<\/p>\n M\u1ee5c L\u1ee5c<\/p>\n T\u00fd : 1<\/p>\n S\u1eedu : 2<\/p>\n D\u1ea7n : 3<\/p>\n M\u00e3o : 4<\/p>\n Th\u00ecn : 5<\/p>\n T\u1ef5 : 6<\/p>\n Ng\u1ecd : 7<\/p>\n M\u00f9i : 8<\/p>\n Th\u00e2n : 9<\/p>\n D\u1eadu : 10<\/p>\n Tu\u1ea5t : 11<\/p>\n H\u1ee3i : 12<\/p>\n <\/p>\n\n
\n
I. C\u00e1ch b\u1eaft l\u00f4 chu\u1ea9n d\u1ef1a v\u00e0o t\u00ednh theo ng\u00e0y \u00e2m<\/span><\/span><\/h2>\n
1.Xem theo 12 con gi\u00e1p<\/span><\/span><\/h3>\n